Problem
Given an integer array (index from 0 to n-1, where n is the size of this array), and an query list. Each query has two integers [start, end]. For each query, calculate the minimum number between index start and end in the given array, return the result list.
Example
For array [1,2,7,8,5], and queries [(1,2),(0,4),(2,4)], return [2,1,5]
Challenge
O(logN) time for each query
Note
这道题目是筛选出Interval数组中的最小值,存入新数组。因此,联想到Segment Tree Build和Segment Tree Query系列的题目,对于Interval的处理,使用线段树是非常有效的方法。之前我们创建的线段树,有max
和count
两个properties。参照max
这个参数,可以考虑在这道题增加一个min
的参数,代表每个结点的最小值。
Solution
public class Solution { public ArrayListintervalMinNumber(int[] A, ArrayList queries) { ArrayList res = new ArrayList (); if (A == null || queries == null) return res; MinTreeNode root = buildTree(A, 0, A.length-1); for (Interval i: queries) { res.add(getMin(root, i.start, i.end)); } return res; } //创建新的树结构MinTreeNode public class MinTreeNode { int start, end, min; MinTreeNode left, right; public MinTreeNode(int start, int end) { this.start = start; this.end = end; } public MinTreeNode(int start, int end, int min) { this(start, end); this.min = min; } } //创建新的MinTreeNode public MinTreeNode buildTree(int[] A, int start, int end) { if (start > end) return null; //下面四行语句是recursion的主体 if (start == end) return new MinTreeNode(start, start, A[start]); MinTreeNode root = new MinTreeNode(start, end); root.left = buildTree(A, start, (start+end)/2); root.right = buildTree(A, (start+end)/2+1, end); //下面三行语句设置每个结点的min值 if (root.left == null) root.min = root.right.min; else if (root.right == null) root.min = root.left.min; else root.min = Math.min(root.left.min, root.right.min); return root; } //获得最小值min的子程序 public int getMin(MinTreeNode root, int start, int end) { //空集和越界情况 if (root == null || root.end < start || root.start > end) { return Integer.MAX_VALUE; } //最底层条件结构 if (root.start == root.end || (start <= root.start && end >= root.end)) { return root.min; } //递归 return Math.min(getMin(root.left, start, end), getMin(root.right, start, end)); }}